मराठी

P If Sin θ = 1 3 Then Find the Value of 2cot2 θ + 2. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 

बेरीज

उत्तर

Given:  

`sin θ=1/3`

⇒ `1/ sinθ=3` 

⇒` cosec θ=3` 

We know that, 

`cosec^2θ-cot ^2θ=1` 

⇒`(3)^2-cot^2θ=1` 

⇒ `cot ^2 θ=9-1`  

Therefore, 

`2 cot ^2 θ+2=2xx8+2` 

          =`16+2` 

          = `18` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 17 | पृष्ठ ५५

संबंधित प्रश्‍न

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following trigonometric identities

cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`


 Write True' or False' and justify your answer the following :

The value of the expression \[\sin {80}^° - \cos {80}^°\] 


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity :

tanA+cotA=secAcosecA 


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Evaluate:
`(tan 65°)/(cot 25°)`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×