Advertisements
Advertisements
प्रश्न
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
उत्तर
LHS = `cos theta/((1-tan theta))-sin^2theta/((cos theta-sintheta))`
=`cos theta/((1-sintheta/costheta)) -sin^2 theta/((cos theta-sin theta))`
=`cos^2 theta/((cos theta-sintheta))- sin^2 theta/((cos theta-sin theta))`
=`(cos^2 theta- sin ^2 theta)/((cos theta- sin theta))`
=`((costheta + sin theta)( cos theta-sin theta))/((cos theta - sin theta))`
=`(cos theta + sin theta)`
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
If sec θ = `25/7`, then find the value of tan θ.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Choose the correct alternative:
cos 45° = ?
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`