Advertisements
Advertisements
प्रश्न
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
उत्तर
LHS = sec A(1 + sin A )( sec A - tan A)
= `1/cos A (1 + sin A) (1/cos A - sin A/cos A)`
= `1/cos A (1 + sin A) ((1 - sin A)/cos A)`
= `(1 - sin^2 A)/(cos^2 A) = (cos^2 A)/(cos^2 A)`
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A