मराठी

Prove the Following Trigonometric Identities. (Cos Theta)/(Cosec Theta + 1) + (Cos Theta)/(Cosec Theta - 1) = 2 Tan Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`

उत्तर

In the given question, we need to prove `(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`

Using the identity `a^2 - b^2  = (a + b)(a - b)`

`cos theta/((cosec theta + 1)) + cos theta/(cosec theta - 1) = (cos theta(cosec theta - 1)+ cos theta(cosec theta + 1))/(cosec^2 theta - 1)`

`= (cos theta (cosec theta - 1 + cosec theta + 1))/(cosec^2 theta -1)  = (cos theta(2 cosec theta))/cot^2 theta`

`= ((2 cos theta)(1/sin theta))/((cos^2 theta/sin^2 theta))`

`= 2 ((cos theta)/(sin theta))(sin^2 theta/cos^2 theta)`

`= 2 sin theta/cos theta`

`= 2 tan theta`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 52 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`


Prove the following trigonometric identities.

`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1


If tanθ `= 3/4` then find the value of secθ.


Without using trigonometric table , evaluate : 

`cosec49°cos41° + (tan31°)/(cot59°)`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


If x = a tan θ and y = b sec θ then


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that sec2θ − cos2θ = tan2θ + sin2θ


If tan α + cot α = 2, then tan20α + cot20α = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×