Advertisements
Advertisements
प्रश्न
If x = a tan θ and y = b sec θ then
पर्याय
`y^2/"b"^2 - x^2/"a"^2` = 1
`x^2/"a"^2 - y^2/"b"^2` = 1
`x^2/"a"^2 + y^2/"b"^2` = 1
`x^2/"a"^2 - y^2/"b"^2` = 0
उत्तर
`y^2/"b"^2 - x^2/"a"^2` = 1
Explanation;
Hint:
x = a tan θ
`x/"a"` = tan θ
`x^2/"a"^2` = tan2θ
`y^2/"b"^2 - x^2/"a"^2` = sec2θ – tan2θ = 1
y = b sec θ
`y/"b"` = sec θ
`y^2/"b"^2` = sec2θ
APPEARS IN
संबंधित प्रश्न
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.