Advertisements
Advertisements
प्रश्न
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
पर्याय
0
1
2
-1
none of these
उत्तर
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = 2.
Explanation:
(1 + tan θ + sec θ) (1 + cot θ − cosec θ)
= `(1+ (sin theta)/(cos theta)+1/(costheta))(1+(costheta)/(sin theta)-1/(sin theta))`
= `((costheta+sintheta +1)/costheta)((sintheta+cos theta -1)/sintheta)`
= `((sintheta+costheta)^2-(1)^2)/(sinthetacostheta)`
= `(sin^2theta+cos^2 theta + 2sin theta cos theta -1)/(sinthetacostheta)`
= `(1+2sinthetacostheta -1)/(sinthetacostheta)`
= `(2sintheta costheta)/(sin theta costheta)`
= 2
Hence, alternative 2 is correct.
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`(1 + cot^2 theta ) sin^2 theta =1`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If `cos theta = 2/3 , "write the value of" ((sec theta -1))/((sec theta +1))`
Write the value of tan10° tan 20° tan 70° tan 80° .
Write the value of cos1° cos 2°........cos180° .
If cosec θ − cot θ = α, write the value of cosec θ + cot α.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If cos θ = `24/25`, then sin θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
sin(45° + θ) – cos(45° – θ) is equal to ______.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.