Advertisements
Advertisements
प्रश्न
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
उत्तर
LHS = `( sin θ tan θ)/(1 - cos θ)`
= `(sin θ. (sin θ)/(cos θ))/(1 - cos θ)`
= `sin^2 θ/(cos θ( 1 - cos θ))`
= `((1 - cos θ)(1 + cos θ))/(cos θ(1 - cos θ))`
= `(1 + cos θ)/(cos θ) = 1/(cos θ) + cos θ/cos θ`
= sec θ + 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Evaluate:
`(tan 65°)/(cot 25°)`
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`