Advertisements
Advertisements
प्रश्न
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
उत्तर
`sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta)`
=`sin^2 theta cos^2 theta sec^2 theta cosec^2 theta `
= ` sin^2 theta xx cos^2 xx 1/cos^2 theta xx1/sin^2 theta`
= 1
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
What is the value of 9cot2 θ − 9cosec2 θ?
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2