Advertisements
Advertisements
प्रश्न
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
उत्तर
L.H.S. = `sqrt((1 - cosA)/(1 + cosA))`
= `sqrt((1 - cosA)/(1 + cosA) xx (1 - cosA)/(1 - cosA))`
= `sqrt((1 - cosA)^2/(1 - cos^2A))`
= `sqrt((1 - cosA)^2/(sin^2A)`
= `(1 - cosA)/sinA`
= `1/sinA - cosA/sinA`
= cosec A – cot A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.