Advertisements
Advertisements
प्रश्न
Without using trigonometric table , evaluate :
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
उत्तर
`(sin49^circ/sin41^circ)^2 + (cos41^circ/sin49^circ)^2`
⇒ `(sin(90^circ - 41^circ)/sin41^circ)^2 + (cos(90^circ - 49^circ)/sin49^circ)^2`
⇒ `(cos41^circ/sin41^circ)^2 + (sin49^circ/sin49^circ)^2`
⇒ 1 + 1 = 2
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
sec4 A − sec2 A is equal to
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Choose the correct alternative:
sec2θ – tan2θ =?