Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
उत्तर
We have to prove `(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and denominator by `(1 - sin theta)` we have
`(1 - sin theta)/(1 + sin theta) = ((1 - sin theta)(1 - sin theta))/((1 + sin theta)(1 - sin theta))`
`= (1 - sin theta)^2/(1 - sin^2 theta)`
`= ((1 - sin theta)/cos theta)^2`
`= (1/cos theta - sin theta/cos theta)^2`
`= (sec theta - tan theta)^2`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Choose the correct alternative:
sec 60° = ?
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.