मराठी

Prove the Following Trigonometric Identities. (Cos Theta - Sin Theta + 1)/(Cos Theta + Sin Theta - 1) = Cosec Theta + Cot Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`

उत्तर

We have to prove the following identity

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`

Consider the LHS = `(cos theta - sin theta + 1)/(cos theta + sin theta - 1)`

`= (cos theta - sin theta  +  1)/(cos theta +  sin theta  - 1) xx (cos theta +  sin theta +  1)/(cos theta +  sin theta + 1)`

`= ((cos theta + 1)^2 - (sin theta)^2)/((cos theta +  sin theta)^2 - (1)^2)`

`= (cos^2 theta +  1 +  2 cos theta - sin^2 theta)/(cos^2 theta +  sin^2 theta + 2 cos theta sin theta - 1)`

`= (cos^2 theta + 1 +  2 cos theta - (1 -  cos^2 theta))/(1 +  2 cos theta sin theta  - 1)`

`= (2 cos^2 theta + 2 cos theta)/(2 cos theta sin theta)`

`= (2 cos^2 theta +  2 cos theta)/(2 cos theta sin theta)`

`= (2 cos theta(cos theta + 1))/(2 cos theta sin theta)`

`= (cos theta + 1)/sin theta`

`= cos theta/sin theta + 1/sin theta`

`= cot theta + cosec theta`

= RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 47.3 | पृष्ठ ४५

संबंधित प्रश्‍न

If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


If sec A + tan A = p, show that:

`sin A = (p^2 - 1)/(p^2 + 1)`


Write the value of cosec2 (90° − θ) − tan2 θ. 


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


If tan θ = `7/24`, then to find value of cos θ complete the activity given below.

Activity:

sec2θ = 1 + `square`    ......[Fundamental tri. identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square/576`

sec2θ = `square/576`

sec θ = `square` 

cos θ = `square`     .......`[cos theta = 1/sectheta]`


Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


(1 – cos2 A) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×