मराठी

Prove the following trigonometric identity. sinθ-cosθ+1sinθ+cosθ-1=1secθ-tanθ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`

बेरीज

उत्तर

Solving the function using trignometric identities:

As we have `(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`

LHS = `(sin theta - cos theta + 1)/(sin theta + cos theta - 1)`

Dividing the numerator and denomenator by cos θ

`(sin theta/cos theta - cos theta/cos theta + 1/cos theta)/(sin theta/cos theta + cos theta/cos theta - 1/cos theta)`

= `(tan theta - 1 + sec theta)/(tan theta + 1 - sec theta)`

Multiplying and dividing by (tan θ - sec θ),

= `(tan theta + sec theta - 1)/(tan theta - sec theta + 1)xx (tan theta - sec theta)/(tan theta - sec theta)`

[(tan θ + sec θ)(tan θ - sec θ = tan2θ - sec2θ)]

= `[((tan^2 theta - sec^2 theta) - (tan theta - sec theta))/((tan theta - sec theta + 1)(tan theta - sec theta))]`

Using the identity sec2θ - tan2 θ = 1,

= `((-1 - tan theta + sec theta))/([(tan theta - sec theta + 1)(tan theta - sec theta)])`

= `(-1)/(tan theta - sec theta)`

= `1/(sec theta - tan theta)`

= RHS Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 47.2 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


Write the value of cosec2 (90° − θ) − tan2 θ. 


\[\frac{x^2 - 1}{2x}\] is equal to 


If cos  \[9\theta\] = sin \[\theta\] and  \[9\theta\]  < 900 , then the value of tan \[6 \theta\] is


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


If sin A = `1/2`, then the value of sec A is ______.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×