Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
उत्तर
Solving the function using trignometric identities:
As we have `(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
LHS = `(sin theta - cos theta + 1)/(sin theta + cos theta - 1)`
Dividing the numerator and denomenator by cos θ
`(sin theta/cos theta - cos theta/cos theta + 1/cos theta)/(sin theta/cos theta + cos theta/cos theta - 1/cos theta)`
= `(tan theta - 1 + sec theta)/(tan theta + 1 - sec theta)`
Multiplying and dividing by (tan θ - sec θ),
= `(tan theta + sec theta - 1)/(tan theta - sec theta + 1)xx (tan theta - sec theta)/(tan theta - sec theta)`
[(tan θ + sec θ)(tan θ - sec θ = tan2θ - sec2θ)]
= `[((tan^2 theta - sec^2 theta) - (tan theta - sec theta))/((tan theta - sec theta + 1)(tan theta - sec theta))]`
Using the identity sec2θ - tan2 θ = 1,
= `((-1 - tan theta + sec theta))/([(tan theta - sec theta + 1)(tan theta - sec theta)])`
= `(-1)/(tan theta - sec theta)`
= `1/(sec theta - tan theta)`
= RHS Hence proved
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of cosec2 (90° − θ) − tan2 θ.
\[\frac{x^2 - 1}{2x}\] is equal to
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
If sin A = `1/2`, then the value of sec A is ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.