Advertisements
Advertisements
प्रश्न
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
उत्तर
`tan^2 theta + sin theta = cos^2 theta`
LHS = `tan^2 theta + sin theta `
=`(sin^2 theta)/(cos^2 theta) + sin theta`
=` (1- cos^2 theta )/( cos^2 theta) + sin theta`
=` sec^2 theta -1 + sin theta `
Since LHS ≠ RHS, this is not an identity.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
`(sec^2 theta-1) cot ^2 theta=1`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Find A if tan 2A = cot (A-24°).
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.