Advertisements
Advertisements
प्रश्न
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
उत्तर
RHS = `(2 cos^3 theta - cos theta) tan theta`
=`(2 cos^2 theta - 1) cos theta xx sin theta/ cos theta`
=`[2(1- sin^2 theta ) -1] sin theta`
=` (2-2 sin^2 theta -1 ) sin theta`
=` (1-2 sin^2 theta ) sin theta`
=`( sin theta -2 sin^3 theta )`
=LHS
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.