मराठी

Prove that `( Sintheta - 2 Sin ^3 Theta ) = ( 2 Cos ^3 Theta - Cos Theta) Tan Theta` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`

उत्तर

RHS = `(2 cos^3 theta - cos theta) tan theta`

        =`(2 cos^2 theta - 1) cos theta xx sin theta/ cos theta`

       =`[2(1- sin^2 theta ) -1] sin theta`

       =` (2-2 sin^2 theta -1 ) sin theta`

       =` (1-2 sin^2 theta ) sin theta`

       =`( sin theta -2 sin^3 theta )`

      =LHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Trigonometric Identities - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 8 Trigonometric Identities
Exercises 1 | Q 37

संबंधित प्रश्‍न

Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following trigonometric identities.

`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identities:

`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×