Advertisements
Advertisements
प्रश्न
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
उत्तर
RHS = `(2 cos^3 theta - cos theta) tan theta`
=`(2 cos^2 theta - 1) cos theta xx sin theta/ cos theta`
=`[2(1- sin^2 theta ) -1] sin theta`
=` (2-2 sin^2 theta -1 ) sin theta`
=` (1-2 sin^2 theta ) sin theta`
=`( sin theta -2 sin^3 theta )`
=LHS
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If `sec theta + tan theta = x," find the value of " sec theta`
Simplify : 2 sin30 + 3 tan45.
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Find the value of ( sin2 33° + sin2 57°).
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0