Advertisements
Advertisements
प्रश्न
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
उत्तर
cosec4 A (1 – cos4 A) – 2 cot2 A
= cosec4 A (1 – cos2 A) (1 + cos2 A) – 2 cot2 A
= cosec4 A (sin2 A) (1 + cos2 A) – 2 cot2 A
= cosec2 A (1 + cos2 A) – 2 cot2 A
= `cosec^2A + cos^2A/sin^2A - 2cot^2A `
= cosec2 A + cot2 A – 2 cot2 A
= cosec2 A – cot2 A
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
The value of sin2 29° + sin2 61° is
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`