Advertisements
Advertisements
प्रश्न
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
उत्तर
LHS = `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2`
= `tan A/(sec^2 A)^2 + cot A/(cosec^2 A)^2`
= `sin A/cos A xx cos^2 A xx cos^2 A + cos A/sin A xx sin^2 A xx sin^2 A`
= sin A.cos3A + sin3A.cos A
= sin A cos A (cos2 A + sin2 A)
= sin A. cos A x 1
= sin A. cos A
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`(sintheta - 2sin^3theta)/(2cos^3theta - costheta) = tantheta`
Write the value of tan1° tan 2° ........ tan 89° .
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
Prove that sin4A – cos4A = 1 – 2cos2A