Advertisements
Advertisements
प्रश्न
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
उत्तर
Given: x sin3 θ + y cos3 θ = sin θ. cos θ
⇒ (x sin θ) sin2θ + (y cos θ) cos2θ = sin θ. cos θ
⇒ (x sin θ) sin2θ + (x sin θ) cos2θ = sin θ. cos θ .....(∵ y cos θ = x sin θ)
⇒ x sin θ ( sin2θ + cos2θ ) = sin θ. cos θ
⇒ x sin θ = sin θ. cos θ
⇒ x = cos θ ....(1)
Again x sin θ = y cos θ
⇒ cos θ sin θ = y cos θ
⇒ y = sin θ .....(2)
Squaring and adding (1) and (2), we get the required result.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`