Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
उत्तर
`(1 - sin^2θ)sec^2θ = 1`
Consider L.H.S = `cos^2θsec^2θ`
= `cos^2θ xx 1/cos^2θ = 1`
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?