Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
उत्तर
`(1 - sin^2θ)sec^2θ = 1`
Consider L.H.S = `cos^2θsec^2θ`
= `cos^2θ xx 1/cos^2θ = 1`
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Choose the correct alternative:
1 + tan2 θ = ?
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A