Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
उत्तर
In the given question, we are given `T_n = sin^n theta + cos^n theta`
We need to prove `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Here L.H.S is
`(T_3 - T_5)/T_1 = ((sin^3 theta = cos^3 theta) - (sin^5 theta + cos^5 theta))/((sin theta + cos theta))`
Now, solving the L.H.S, we get
`((sin^3 theta + cos^3 theta)- (sin^5 theta + cos^5 theta))/((sin theta + cos theta)) = (sin^3 theta - sin^5 theta + cos^3 theta - cos^ 5 theta)/(sin theta + cos theta)`
` = (sin^3 theta (1 - sin^2 theta) + cos^3 theta (1 - cos^2 theta))/((sin theta + cos theta))`
Further Using the property `sin^2 theta + cos^2 theta = 1` we get
`cos^2 theta = 1 - sin^2 theta`
`sin^2 theta = 1 - cos^2 theta`
So,
`(sin^3 theta(1 - sin^2 theta) + cos^3 theta (1 - cos^2 theta))/(sin theta + cos theta) = (sin^3 theta cos^2 theta + cos^3 theta sin^2 theta)/(sin theta + cos theta)`
`= (sin^2 theta cos^2 theta (sin theta + cos theta))/(sin theta + cos theta)`
`= sin^2 theta cos^2 theta`
Now, solving the R.H.S, we get
`(T_5 - T_7)/T_3 = ((sin^5 theta + cois ^5)(sin^7 theta + cos^2 theta))/(sin^3 theta + cos^3 theta)`
So,
`((sin^5 theta + cos^5 theta) - (sin^7 theta + cos^7 theta))/(sin^3 theta + cos^3 theta) = (sin^5 theta - sin^7 theta + cos^5 theta - cos^7 theta)/(sin^3 theta + cos^3 theta)`
`= (sin^5 theta (1 - sin^2 theta) + cos^5 theta (1 + cos^2 theta))/ (sin^3 theta + cos^3 theta)`
`= sin^2 theta cos^2 theta`
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If cos A + cos2 A = 1, then sin2 A + sin4 A =
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?