मराठी

Prove the Following Trigonometric Identities. T_N = Sin^N Theta + Cos^N Theta`, Prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`

उत्तर

In the given question, we are given `T_n = sin^n theta + cos^n theta`

We need to prove `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`

Here L.H.S is

`(T_3 - T_5)/T_1 = ((sin^3 theta = cos^3 theta) - (sin^5 theta + cos^5 theta))/((sin theta + cos theta))`

Now, solving the L.H.S, we get

`((sin^3 theta + cos^3 theta)- (sin^5 theta + cos^5 theta))/((sin theta + cos theta)) = (sin^3 theta - sin^5 theta + cos^3 theta - cos^ 5 theta)/(sin theta + cos theta)`

` = (sin^3 theta (1 - sin^2 theta) + cos^3 theta (1 - cos^2 theta))/((sin theta  + cos theta))`

Further Using the property `sin^2 theta + cos^2 theta = 1` we get

`cos^2 theta = 1 - sin^2 theta`

`sin^2 theta = 1 - cos^2 theta`

So,

`(sin^3 theta(1 - sin^2 theta) + cos^3 theta (1 - cos^2 theta))/(sin theta + cos theta)  = (sin^3 theta cos^2 theta + cos^3 theta sin^2 theta)/(sin theta + cos theta)`

`= (sin^2 theta cos^2 theta (sin theta + cos theta))/(sin theta + cos theta)`

`= sin^2 theta cos^2 theta`

Now, solving the R.H.S, we get

`(T_5 - T_7)/T_3 = ((sin^5 theta + cois ^5)(sin^7 theta + cos^2 theta))/(sin^3 theta + cos^3 theta)`

So,

`((sin^5 theta + cos^5 theta) - (sin^7 theta + cos^7 theta))/(sin^3 theta + cos^3 theta) = (sin^5 theta - sin^7 theta + cos^5 theta - cos^7 theta)/(sin^3 theta + cos^3 theta)`

`= (sin^5 theta (1  - sin^2 theta) + cos^5 theta (1 + cos^2 theta))/ (sin^3 theta + cos^3 theta)`

`= sin^2 theta cos^2 theta`

Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 55 | पृष्ठ ४५

संबंधित प्रश्‍न

Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove the following identities:

`sinA/(1 - cosA) - cotA = cosecA`


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


If cos A + cos2 A = 1, then sin2 A + sin4 A =


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


Prove the following identity : 

`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`


Prove the following identity : 

`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×