Advertisements
Advertisements
प्रश्न
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
उत्तर
Given 3 sin θ + 5 cos θ = 5
Squaring on both sides for both the equations
⇒ 9 sin2θ + 25 cos2θ + 30 sinθ cosθ = 25
⇒ 25 sin2θ + 9 cos2θ − 30 sinθ cosθ = x2
Adding the equations;
⇒ 34 (sin2θ + cos2θ) = 25 + x2
⇒ x2 = 34 − 25 = 9
⇒ x = ±3
∴ 5 sinθ − 3 cosθ = ±3
Hence proved.
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of tan10° tan 20° tan 70° tan 80° .
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`