मराठी

Prove the Following Trigonometric Identities. (1 + Tan^2 A) + (1 + 1/Tan^2 A) = 1/(Sin^2 a - Sin^4 A) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`

उत्तर

We need to prove `(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`

Using the property `1 + tan^2 theta = sec^2 theta` we get

`(1 + tan^2 A)+(1 + 1/tan^2 A) = sec^2 A = ((tan^2 A + 1)/tan^2 A)`

`= sec^2 A + (sec^2 A)/(tan^2 A)`

Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta` we get

`sec^2 A + ((sec^2 A)/(tan^2 A)) = 1/cos^2 A + ((1/cos^2 A)/((sin^2 A)/(cos^2 A)))`

`= 1/cos^2 A + (1/cos^2A  xx cos^2 A/sin^2 A)` 

` = 1/cos^2 A + 1/sin^2 A`

`= (sin^2 A + cos^2 A)/(cos^2 A(sin^2 A))`

Further, using the property, `sin^2 theta + cos^2 theta = 1` we get

`(sin^2 A + cos^2 A)/(cos^2 A(sin^2 A)) = 1/(cos^2 A (sin^2 A))`

`= 1/((1 - sin^2 A)(sin^2 A))`     (using `cos^2 theta = 1 - sin^2 theta`)

`= 1/(sin^2 A - sin^4 A)`

Hence proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 44 | पृष्ठ ४५

संबंधित प्रश्‍न

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


Write the value of tan1° tan 2°   ........ tan 89° .


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\] 


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Without using trigonometric identity , show that :

`cos^2 25^circ + cos^2 65^circ = 1`


If sin θ = `1/2`, then find the value of θ. 


Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.


Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`


Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×