Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
उत्तर
We need to prove `(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Using the property `1 + tan^2 theta = sec^2 theta` we get
`(1 + tan^2 A)+(1 + 1/tan^2 A) = sec^2 A = ((tan^2 A + 1)/tan^2 A)`
`= sec^2 A + (sec^2 A)/(tan^2 A)`
Now using `sec theta = 1/cos theta` and `tan theta = sin theta/cos theta` we get
`sec^2 A + ((sec^2 A)/(tan^2 A)) = 1/cos^2 A + ((1/cos^2 A)/((sin^2 A)/(cos^2 A)))`
`= 1/cos^2 A + (1/cos^2A xx cos^2 A/sin^2 A)`
` = 1/cos^2 A + 1/sin^2 A`
`= (sin^2 A + cos^2 A)/(cos^2 A(sin^2 A))`
Further, using the property, `sin^2 theta + cos^2 theta = 1` we get
`(sin^2 A + cos^2 A)/(cos^2 A(sin^2 A)) = 1/(cos^2 A (sin^2 A))`
`= 1/((1 - sin^2 A)(sin^2 A))` (using `cos^2 theta = 1 - sin^2 theta`)
`= 1/(sin^2 A - sin^4 A)`
Hence proved
APPEARS IN
संबंधित प्रश्न
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Write the value of tan1° tan 2° ........ tan 89° .
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
If sin θ = `1/2`, then find the value of θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.