मराठी

Prove the Following Trigonometric Identities. (1 + Tan2θ) (1 − Sinθ) (1 + Sinθ) = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1

उत्तर

We have to prove  `(1 + tan^2 theta)(1 - sin theta)(1 + sin theta) = 1`

We know that

`sin^2 theta + cos^2 theta = 1`

`sec^2 theta - tan^2 theta = 1`

So

`(1 + tan^2 theta)(1 - sin theta) = (1 + tan^2 theta){(1 - sin theta)(1 + sin theta)}`

` = (1 + tan^2 theta)(1 - sin^2 theta)`

`= sec^2 theta cos^2 theta`

` = 1/cos^2 theta cos^2 theta`

= 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 21 | पृष्ठ ४४

संबंधित प्रश्‍न

Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`


Write the value of tan1° tan 2°   ........ tan 89° .


If x =  a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`


If tanθ `= 3/4` then find the value of secθ.


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Prove that sin6A + cos6A = 1 – 3sin2A . cos2A


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×