Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
उत्तर
R.H.S. = `(1 - sinA)/(1 + sinA)`
= `(1 - 1/(cosecA))/(1 + 1/(cosecA))`
= `(cosecA - 1)/(cosecA + 1)`
= `(cosecA - 1)/(cosecA + 1) xx (cosecA + 1)/(cosecA + 1)`
= `(cosec^2A - 1)/(cosecA + 1)^2 = cot^2A/(cosecA + 1)^2` ...(∵ cosec2 A – 1 = cot2 A)
= L.H.S.
APPEARS IN
संबंधित प्रश्न
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that (sin θ + cosec θ)2 + (cos θ + sec θ)2 = 7 + tan2 θ + cot2 θ.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Choose the correct alternative:
cot θ . tan θ = ?
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.