Advertisements
Advertisements
प्रश्न
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
उत्तर
LHS = cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1
= cot θ. cot θ - cosec θ. cosec θ + 1
= (cot2θ - cosec2θ) + 1
= - 1 + 1 = 0
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove the following identities:
`(1 - 2sin^2A)^2/(cos^4A - sin^4A) = 2cos^2A - 1`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0