Advertisements
Advertisements
प्रश्न
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
उत्तर
`1/(sinA - cosA) - 1/(sinA + cosA)`
= `(sinA + cosA - sinA + cosA)/((sinA - cosA)(sinA + cosA)`
= `(2cosA)/(sin^2A - cos^2A)`
= `(2cosA)/(sin^2A - (1 - sin^2A))`
= `(2cosA)/(sin^2A - 1 + sin^2A)`
= `(2cosA)/(2sin^2A - 1)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
If sin θ = `1/2`, then find the value of θ.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
If sin A = `1/2`, then the value of sec A is ______.