Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
उत्तर
We have to prove (sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
We know that `sin^2 A + cos^2 A = 1`
So,
`(sec A − cosec A) (1 + tan A + cot A) = (1/cos A - 1/sin A)(1 + sinA/cos A + cos A/sin A)`
`= ((sin A - cos A)/(sin A cos A))((sin A cos A + sin^2 A + cos^2 A)/(sin A cos A))`
`= ((sin A - cos A)/(sin A cos A)) ((sin A cos A + 1)/(sin A cos A))`
`= ((sin A - cos A)(sin A cos A + 1))/(sin^2 A cos^2 A)`
`= (sin^2 A cos A + sin A - cos^2 A sin A - cos A)/(sin^2 A cos^2 A)`
`= ((sin^2 A cos A - cos A) + (sin A - cos^2 A sin A))/(sin^2 A cos^2 A)`
`= (cos A(sin^2 A - 1) + sin A (1 - cos^2 A))/(sin^2 A cos^2 A)`
`= (cos A(-cos^2 A) + sin A (sin^2 A))/(sin^2 A cos^2 A)`
`= (-cos^3 A + sin^3 A)/(sin^2 A cos^2 A)`
`= (sin^3 A - cos^3 A)/(sin^2 A cos^2 A)`
`= sin^3 A/(sin^2 A cos^2 A) - cos^3 A/(sin^2 A cos^2 A)`
`= sin A/cos^2 A = cos A/sin^2 A`
`= sin A/cos A 1/cos A - cos A/sin A 1/sin A`
= tan A sec A - cot A cosec A
Hence proved.
APPEARS IN
संबंधित प्रश्न
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Simplify : 2 sin30 + 3 tan45.
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
If sec θ = `25/7`, then find the value of tan θ.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
Given that sin θ = `a/b`, then cos θ is equal to ______.
(1 + sin A)(1 – sin A) is equal to ______.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`