Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
उत्तर
We have to prove (sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
We know that `sin^2 A + cos^2 A = 1`
So,
`(sec A − cosec A) (1 + tan A + cot A) = (1/cos A - 1/sin A)(1 + sinA/cos A + cos A/sin A)`
`= ((sin A - cos A)/(sin A cos A))((sin A cos A + sin^2 A + cos^2 A)/(sin A cos A))`
`= ((sin A - cos A)/(sin A cos A)) ((sin A cos A + 1)/(sin A cos A))`
`= ((sin A - cos A)(sin A cos A + 1))/(sin^2 A cos^2 A)`
`= (sin^2 A cos A + sin A - cos^2 A sin A - cos A)/(sin^2 A cos^2 A)`
`= ((sin^2 A cos A - cos A) + (sin A - cos^2 A sin A))/(sin^2 A cos^2 A)`
`= (cos A(sin^2 A - 1) + sin A (1 - cos^2 A))/(sin^2 A cos^2 A)`
`= (cos A(-cos^2 A) + sin A (sin^2 A))/(sin^2 A cos^2 A)`
`= (-cos^3 A + sin^3 A)/(sin^2 A cos^2 A)`
`= (sin^3 A - cos^3 A)/(sin^2 A cos^2 A)`
`= sin^3 A/(sin^2 A cos^2 A) - cos^3 A/(sin^2 A cos^2 A)`
`= sin A/cos^2 A = cos A/sin^2 A`
`= sin A/cos A 1/cos A - cos A/sin A 1/sin A`
= tan A sec A - cot A cosec A
Hence proved.
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(1 - tanA)^2 + (1 + tanA)^2 = 2sec^2A`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.
Activity:
L.H.S = `square`
= `cos^2theta xx square .....[1 + tan^2theta = square]`
= `(cos theta xx square)^2`
= 12
= 1
= R.H.S
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.