Advertisements
Advertisements
प्रश्न
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.
विकल्प
–1
1
0
2
उत्तर
(sec2 θ – 1) (cosec2 θ – 1) is equal to 1.
Explanation:
(sec2 θ – 1) (cosec2 θ – 1) = tan2 θ.cot2 θ ...`[(∵ sec^2 θ - 1 = tan^2 θ),("cosec"^2 θ - 1 = cot^2 θ)]`
= `tan^2 θ . 1/tan^2 θ`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
If tan θ = `13/12`, then cot θ = ?
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
(1 – cos2 A) is equal to ______.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1