Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
उत्तर
`(1 - cosA)/sinA + sinA/(1 - cosA)`
= `((1 - cosA)^2 + sin^2A)/(sinA(1 - cosA))`
= `(1 + cos^2A - 2cosA + sin^2A)/(sinA(1 - cosA))`
= `(2 - 2cosA)/(sinA(1 - cosA))`
= `(2(1 - cosA))/(sinA(1 - cosA))`
= 2 cosec A
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`