Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
उत्तर
L.H.S. = `(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA)`
= `((sinA + cosA)^2 + (sinA - cosA)^2)/((sinA - cosA)(sinA + cosA))`
= `(sin^2A + cos^2A + 2sinAcosA + sin^2A + cos^2A - 2sinA cosA)/(sin^2A - cos^2A)`
= `(2(sin^2A + cos^2A))/(sin^2A - cos^2A)`
= `2/(sin^2A - cos^2A)` ...[sin2A + cos2A = 1]
= `2/(sin^2A - cos^2A)`
= `2/(sin^2A - (1 - sin^2A))`
= `2/(2sin^2A - 1)` = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Write the value of tan1° tan 2° ........ tan 89° .
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1