Advertisements
Advertisements
प्रश्न
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
उत्तर
Given : sin θ + cos θ = m and secθ + cosecθ = n
Consider L.H.S. = n(m2 - 1) = (secθ + cosecθ)[(sinθ + cosθ)2 - 1]
= `(1/cosθ + 1/sinθ) [sin^2θ + cos^2θ + 2sinθcosθ - 1`]
= `((cosθ + sinθ)/(sinθcosθ)) (1 + 2sinθcosθ - 1)`
= `((cosθ + sinθ))/(sinθcosθ) (2 sinθ cosθ)`
= 2(sinθ + cosθ)
= 2m = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.