English

If Sina + Cosa = M and Seca + Coseca = N , Prove that N(M2 - 1) = 2m - Mathematics

Advertisements
Advertisements

Question

If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m

Sum

Solution

Given : sin θ + cos θ = m and secθ + cosecθ = n

Consider L.H.S. = n(m2 - 1) = (secθ + cosecθ)[(sinθ + cosθ)2 - 1]

= `(1/cosθ + 1/sinθ) [sin^2θ + cos^2θ + 2sinθcosθ - 1`]

= `((cosθ + sinθ)/(sinθcosθ)) (1 + 2sinθcosθ - 1)`

= `((cosθ + sinθ))/(sinθcosθ) (2 sinθ cosθ)`

= 2(sinθ + cosθ)

= 2m = R.H.S.

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometric Identities - Exercise 21.2

APPEARS IN

Frank Mathematics - Part 2 [English] Class 10 ICSE
Chapter 21 Trigonometric Identities
Exercise 21.2 | Q 4
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×