Advertisements
Advertisements
Question
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Solution
Given : sin θ + cos θ = m and secθ + cosecθ = n
Consider L.H.S. = n(m2 - 1) = (secθ + cosecθ)[(sinθ + cosθ)2 - 1]
= `(1/cosθ + 1/sinθ) [sin^2θ + cos^2θ + 2sinθcosθ - 1`]
= `((cosθ + sinθ)/(sinθcosθ)) (1 + 2sinθcosθ - 1)`
= `((cosθ + sinθ))/(sinθcosθ) (2 sinθ cosθ)`
= 2(sinθ + cosθ)
= 2m = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?