English

Prove the following trigonometric identities. cosA1-tanA+sinA1-cotA =sinA+cosA - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`

Sum

Solution

We need to prove `cos A/(1 - tan A) + sin A/(1 -  cot A) = sin A + cos `

Solving the L.H.S, we get

`cos A/(1 - tan A) + sin A/(1 - cot A)`

= `cos A/(1 - sin A/cos A) + sin A/(1 - cos A/sin A)`

`= cos A/((cos A - sin A)/cos A) + sin A/((sin A - cos A)/sin A)`

`= cos^2 A/(cos A - sin A) + (sin^2 A)/(sin A - cos A)`

`= (cos^2 A - sin^2 A)/(cos A - sin A)`

`= ((cos A + sin A)(cos A - sin A))/(cos A - sin A)`   [using `a^2 - b^2  = (a + b)(a -b)`]

= cos A + sin A

= RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 51
RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 42 | Page 45

RELATED QUESTIONS

Express the ratios cos A, tan A and sec A in terms of sin A.


 
 

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(1+ secA)/sec A = (sin^2A)/(1-cosA)` 

[Hint : Simplify LHS and RHS separately.]

 
 

Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove the following identities:

`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`sin theta/((cot theta + cosec  theta)) - sin theta /( (cot theta - cosec  theta)) =2`


`(cos  ec^theta + cot theta )/( cos ec theta - cot theta  ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta  cot theta`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity :

`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove the following identity :

`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


If cosθ = `5/13`, then find sinθ. 


Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0


If 1 – cos2θ = `1/4`, then θ = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×