Advertisements
Advertisements
Question
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Solution
R.H.S `m^2 sin^2 theta`
`= (a cos theta + b sin theta)^2 + (a sin theta - b cos theta)^2`
`= a^2 cos^2 theta + b^2 sin^2 theta + 2 ab sin theta cos theta + a^2 sin^2 theta + b^2 cos^2 theta - 2 ab sin theta cos theta`
`= a^2 cos^2 theta + b^2 cos^2 theta + b^2 sin^2 theta + a^2 sin^2 theta`
`= a^2(sin^2 theta + cos^2 theta) + b^2(sin^2 theta + cos^2 theta)`
`=a^2 + b^2` (∵ `sin^2 theta + cos^2 theta = 1`)
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If cos A + cos2 A = 1, then sin2 A + sin4 A =
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Prove the following identity :
`(1 + sinθ)/(cosecθ - cotθ) - (1 - sinθ)/(cosecθ + cotθ) = 2(1 + cotθ)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1