English

If cosθ + sinθ = 2 cosθ, show that cosθ - sinθ = 2 sinθ. - Mathematics

Advertisements
Advertisements

Question

If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.

Sum

Solution 1

(cosθ + sinθ)2 = (`sqrt2`. cosθ)2

cos2θ +  sin2θ + 2.cosθ.sinθ = 2cos2θ

1 + 2.cosθ.sinθ = 2cos2θ

2.cosθ.sinθ = 2cos2θ − 1

(cosθ.sinθ)= cos2θ + sin2θ − 2.cosθ.sinθ

= 1 − (2.cos2θ − 1)

= 1 − 2.cos2θ +1

= 2 − 2.cos2θ

= 2(1 − cos2θ)

cosθ − sinθ = `sqrt(2sin^2θ)`

= `sqrt2`sinθ

Hence proved

shaalaa.com

Solution 2

Given:
cosθ + sinθ = `sqrt2`cosθ
squaring on both sides, we get,
cos2θ + sin2θ + 2sinθ cosθ = 2cos2θ
cos2θ − sin2θ = 2cosθ sinθ
(cosθ + sinθ)(cosθ − sinθ) = 2cosθ sinθ
`sqrt2`cosθ (cosθ − sinθ) = 2cosθ sinθ   ...[ Given cosθ + sinθ = `sqrt2`cosθ]
∴cosθ − sinθ = `sqrt2`sinθ
Hence proved
shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 36
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×