Advertisements
Advertisements
Question
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Solution 1
(cosθ + sinθ)2 = (`sqrt2`. cosθ)2
cos2θ + sin2θ + 2.cosθ.sinθ = 2cos2θ
1 + 2.cosθ.sinθ = 2cos2θ
2.cosθ.sinθ = 2cos2θ − 1
(cosθ.sinθ)2 = cos2θ + sin2θ − 2.cosθ.sinθ
= 1 − (2.cos2θ − 1)
= 1 − 2.cos2θ +1
= 2 − 2.cos2θ
= 2(1 − cos2θ)
cosθ − sinθ = `sqrt(2sin^2θ)`
= `sqrt2`sinθ
Hence proved
Solution 2
APPEARS IN
RELATED QUESTIONS
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`