Advertisements
Advertisements
Question
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Solution
LHS = (cosec A - sin A)(sec A - cos A). sec2A
= `(1/sin A - sin A).(1/cos A - cos A). 1/cos^2 A`
= `(1- sin^2A)/sin A.(1- cos^2 A)/(cos A) xx 1/cos^2 A`
= `cos^2 A/sin A xx sin^2 A/cos A xx 1/cos^2 A ....[ ∵ ( 1 - sin^2 A) = cos^2 A, 1 - cos^2 A = sin^2 A]`
= `sin A/cos A = tan A`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
sec4 A − sec2 A is equal to
cos4 A − sin4 A is equal to ______.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Choose the correct alternative:
1 + tan2 θ = ?
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.