English

If X/A Cos Theta + Y/B Sin Theta = 1 and X/A Sin Theta - Y/B Cos Theta = 1 Prove that X^2/A^2 + Y^2/B^2 = 2 - Mathematics

Advertisements
Advertisements

Question

if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`

Sum

Solution 1

`[x/a cos theta + y/b sin theta]^2 + [x/a sin theta - y/b cos theta] = (1)^2 + (1)^2`

`x^2/a^2 cos^2 theta + y^2/b^2 sin^2 theta (2xy)/(ab) cos theta sin theta = x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - (2xy)/(ab) sin theta cos theta = 1 + 1`

`x^2/a^2  cos^2 theta + y^2/b^2 cos^2 theta  + y^2/b^2 sin^2  theta  = 2` 

`cos^ theta [x^2/a^2 + y^2/b^2] + sin^2 theta(x^2/a^2  + y^2/a^2) = 2`

`x^2/a^2 + y^2/b^2` = (∴ `cos^2 theta + sin^2 theta = 1`)

shaalaa.com

Solution 2

It is given that:

`x/a cos θ + y/b sin θ = 1`     ....(A)

and `x/a sin θ - y/b cos θ = 1`    ....(B) 

On squaring equation (A), we get

`(x/a cos θ + y/b sin θ)^2 = (1)^2`

⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ = 1`     ....(c)

On squaring equation (B), we get

= `(x/a sin θ - y/b cos θ )^2 = (1)^2`

⇒ `x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1`  ....(D)

Adding (C) and (D), we get,

⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ + x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1 + 1`

⇒ `x^2/a^2 sin^2 θ  + y^2/b^2cos^2 θ-(4xy)/"ab" sin^2 θ + cos^2 θ = 2`

⇒ `x^2/a^2 xx 1 + y^2/b^2 xx 1 = 2`

⇒ `x^2/a^2 + y^2/b^2 = 2`

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 67
RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 75 | Page 46

RELATED QUESTIONS

 Evaluate sin25° cos65° + cos25° sin65°


Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta  + cot theta`


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


`cot^2 theta - 1/(sin^2 theta ) = -1`a


If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`


Write the value of `3 cot^2 theta - 3 cosec^2 theta.`


If `secθ = 25/7 ` then find tanθ.


Define an identity.


Write the value of sin A cos (90° − A) + cos A sin (90° − A).


If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\] 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`cos 63^circ sec(90^circ - θ) = 1`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×