Advertisements
Advertisements
Question
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Solution 1
`[x/a cos theta + y/b sin theta]^2 + [x/a sin theta - y/b cos theta] = (1)^2 + (1)^2`
`x^2/a^2 cos^2 theta + y^2/b^2 sin^2 theta (2xy)/(ab) cos theta sin theta = x^2/a^2 sin^2 theta + y^2/b^2 cos^2 theta - (2xy)/(ab) sin theta cos theta = 1 + 1`
`x^2/a^2 cos^2 theta + y^2/b^2 cos^2 theta + y^2/b^2 sin^2 theta = 2`
`cos^ theta [x^2/a^2 + y^2/b^2] + sin^2 theta(x^2/a^2 + y^2/a^2) = 2`
`x^2/a^2 + y^2/b^2` = (∴ `cos^2 theta + sin^2 theta = 1`)
Solution 2
It is given that:
`x/a cos θ + y/b sin θ = 1` ....(A)
and `x/a sin θ - y/b cos θ = 1` ....(B)
On squaring equation (A), we get
`(x/a cos θ + y/b sin θ)^2 = (1)^2`
⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ = 1` ....(c)
On squaring equation (B), we get
= `(x/a sin θ - y/b cos θ )^2 = (1)^2`
⇒ `x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1` ....(D)
Adding (C) and (D), we get,
⇒ `x^2/a^2 cos^2 θ + y^2/b^2 sin^2 θ + 2 x/a . y/b sin θ. cos θ + x^2/a^2 sin^2 θ + y^2/b^2 cos^2 θ + 2 x/a . y/b sin θ. cos θ = 1 + 1`
⇒ `x^2/a^2 sin^2 θ + y^2/b^2cos^2 θ-(4xy)/"ab" sin^2 θ + cos^2 θ = 2`
⇒ `x^2/a^2 xx 1 + y^2/b^2 xx 1 = 2`
⇒ `x^2/a^2 + y^2/b^2 = 2`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If `secθ = 25/7 ` then find tanθ.
Define an identity.
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`