Advertisements
Advertisements
Question
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
Solution
LHS = `[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) `
= `[1/((1/cos^2θ - cos^2θ)) + 1/((1/sin^2θ - sin^2θ))](sin^2θcos^2θ)`
= `[1/(((1 - cos^4θ)/cos^2θ)) + 1/(((1 - sin^4θ)/sin^2θ)]](sin^2θcos^2θ)`
= `[cos^2θ/(1 - cos^4θ) + sin^2θ/(1 - sin^4θ))](sin^2θcos^2θ)`
= `[(cos^2θ - cos^2θsin^2θ + sin^2θ - sin^2θcos^4θ)/((1 - cos^4θ)(1 - sin^4θ))] (sin^2θcos^2θ)]`
= `[(cos^2θ + sin^2θ - cos^2θsin^2θ(cos^2θ + sin^2θ))/((1 - cos^2θ)(1 + cos^2θ)(1 - sin^2θ)(1 + sin^2θ))](sin^2θcos^2θ)`
= `[(1 - cos^2θsin^2θ)/(sin^2θ(1 + cos^2θ)cos^2θ(1 + sin^2θ))](sin^2θcos^2θ)`
(∵ `cos^2θ + sin^2θ = 1` , (`1 - cos^2θ`) = `sin^2θ` , (`1 - sin^2θ) = cos^2θ`)
= `(1 - cos^2θsin^2θ)/((1 + cos^2θ)(1 + sin^2θ)) = (1 - cos^2θsin^2θ)/(1 + sin^2θ + cos^2θ + sin^2θcos^2θ)`
= `(1 - cos^2θsin^2θ)/(1 + 1 + sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
APPEARS IN
RELATED QUESTIONS
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `cosec theta = 2x and cot theta = 2/x ," find the value of" 2 ( x^2 - 1/ (x^2))`
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
If x = a tan θ and y = b sec θ then
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Prove that cot2θ × sec2θ = cot2θ + 1
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ