Advertisements
Advertisements
प्रश्न
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
उत्तर
LHS = `[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) `
= `[1/((1/cos^2θ - cos^2θ)) + 1/((1/sin^2θ - sin^2θ))](sin^2θcos^2θ)`
= `[1/(((1 - cos^4θ)/cos^2θ)) + 1/(((1 - sin^4θ)/sin^2θ)]](sin^2θcos^2θ)`
= `[cos^2θ/(1 - cos^4θ) + sin^2θ/(1 - sin^4θ))](sin^2θcos^2θ)`
= `[(cos^2θ - cos^2θsin^2θ + sin^2θ - sin^2θcos^4θ)/((1 - cos^4θ)(1 - sin^4θ))] (sin^2θcos^2θ)]`
= `[(cos^2θ + sin^2θ - cos^2θsin^2θ(cos^2θ + sin^2θ))/((1 - cos^2θ)(1 + cos^2θ)(1 - sin^2θ)(1 + sin^2θ))](sin^2θcos^2θ)`
= `[(1 - cos^2θsin^2θ)/(sin^2θ(1 + cos^2θ)cos^2θ(1 + sin^2θ))](sin^2θcos^2θ)`
(∵ `cos^2θ + sin^2θ = 1` , (`1 - cos^2θ`) = `sin^2θ` , (`1 - sin^2θ) = cos^2θ`)
= `(1 - cos^2θsin^2θ)/((1 + cos^2θ)(1 + sin^2θ)) = (1 - cos^2θsin^2θ)/(1 + sin^2θ + cos^2θ + sin^2θcos^2θ)`
= `(1 - cos^2θsin^2θ)/(1 + 1 + sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
APPEARS IN
संबंधित प्रश्न
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.