Advertisements
Advertisements
प्रश्न
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
उत्तर
`tanA - cotA = sinA/cosA - cosA/sinA`
= `(sin^2A - cos^2A)/(sinAcosA)`
= `(1 - cos^2A - cos^2A)/(sinAcosA)` (`Q sin^2A = 1 - cos^2A`)
= `(1 - 2cos^2A)/(sinAcosA)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Choose the correct alternative:
cos θ. sec θ = ?