Advertisements
Advertisements
प्रश्न
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
उत्तर
`tanA - cotA = sinA/cosA - cosA/sinA`
= `(sin^2A - cos^2A)/(sinAcosA)`
= `(1 - cos^2A - cos^2A)/(sinAcosA)` (`Q sin^2A = 1 - cos^2A`)
= `(1 - 2cos^2A)/(sinAcosA)`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
tan θ cosec2 θ – tan θ is equal to
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`