मराठी

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE chapter 21 - Trigonometric Identities [Latest edition]

Advertisements

Chapters

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE chapter 21 - Trigonometric Identities - Shaalaa.com
Advertisements

Solutions for Chapter 21: Trigonometric Identities

Below listed, you can find solutions for Chapter 21 of CISCE Frank for Mathematics - Part 2 [English] Class 10 ICSE.


Exercise 21.1Exercise 21.2Exercise 21.3
Exercise 21.1

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE 21 Trigonometric Identities Exercise 21.1

Exercise 21.1 | Q 1.01

Prove the following identity :

(1-sin2θ)sec2θ=1

Exercise 21.1 | Q 1.02

Prove the following identity :

(1-cos2θ)sec2θ=tan2θ

Exercise 21.1 | Q 1.03

Prove the following identity :

tanA+cotA=secAcosecA 

Exercise 21.1 | Q 1.04

Prove the following identity :

sinθ(1+tanθ)+cosθ(1+cotθ)=secθ+cosecθ 

Exercise 21.1 | Q 1.05

Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 

Exercise 21.1 | Q 1.06

Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  

Exercise 21.1 | Q 1.07

Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1

Exercise 21.1 | Q 1.08

Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1

Exercise 21.1 | Q 1.09

Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1

Exercise 21.1 | Q 1.1

Prove the following identity : 

secA-1secA+1=1-cosA1+cosA

Exercise 21.1 | Q 1.11

Prove the following identity :

1+sinA1-sinA=cosecA+1cosecA-1

Exercise 21.1 | Q 1.12

Prove the following identity :

cosA1+sinA=secA-tanA

Exercise 21.1 | Q 1.13

Prove the following identity :

tanθ+secθ-1tanθ-secθ+1=1+sinθcosθ

Exercise 21.1 | Q 2.01

Prove the following identity : 

sin2Acos2B-cos2Asin2B=sin2A-sin2B

Exercise 21.1 | Q 2.02

Prove the following identity :

(1-tanA)2+(1+tanA)2=2sec2A

Exercise 21.1 | Q 2.03

Prove the following identity :

cosec4A-cosec2A=cot4A+cot2A

Exercise 21.1 | Q 2.04

Prove the following identity :

sec2A+cosec2A=sec2Acosec2A

Exercise 21.1 | Q 2.05

Prove the following identity :

cos4A-sin4A=2cos2A-1

Exercise 21.1 | Q 2.06

Prove the following identity :

tan2A-sin2A=tan2A.sin2A

Exercise 21.1 | Q 2.07

Prove the following identity :

(secA - cosA)(secA + cosA) = sin2A+tan2A

Exercise 21.1 | Q 2.08

Prove the following identity :

(cosA+sinA)2+(cosA-sinA)2=2

Exercise 21.1 | Q 2.09

Prove the following identity :

(cosecA-sinA)(secA-cosA)(tanA+cotA)=1

Exercise 21.1 | Q 2.1

Prove the following identity :

sec2A.cosec2A=tan2A+cot2A+2

Exercise 21.1 | Q 2.11

Prove the following identity : 

cotA+cosecA-1cotA-cosecA+1=cosA+1sinA

Exercise 21.1 | Q 2.12

Prove the following identity : 

cosA1-tanA+sinA1-cotA=sinA+cosA

Exercise 21.1 | Q 2.13

Prove the following identity : 

(cosecA-sinA)(secA-cosA)=1tanA+cotA

Exercise 21.1 | Q 2.14

Prove the following identity : 

sin4A+cos4A=1-2sin2Acos2A

Exercise 21.1 | Q 2.15

Prove the following Identities :

cosecAcotA+tanA=cosA

Exercise 21.1 | Q 2.16

Prove the following identities:

tanA+tanBcotA+cotB=tanAtanB

Exercise 21.1 | Q 2.17

Prove the following identities:

secA-1secA+1=(sinA1+cosA)2

Exercise 21.1 | Q 3.01

Prove the following identity : 

sinA1+cosA+1+cosAsinA=2cosecA

Exercise 21.1 | Q 3.02

Prove the following identity :

1+cosA1-cosA=(cosecA+cotA)2

Exercise 21.1 | Q 3.03

Prove the following identity :

cotA+tanBcotB+tanA=cotAtanB

Exercise 21.1 | Q 3.04

Prove the following identity :

1tanA+cotA=sinAcosA

Exercise 21.1 | Q 3.05

Prove the following identity :

tanA-cotA=1-2cos2AsinAcosA

Exercise 21.1 | Q 3.06

Prove the following identity : 

(1+tan2A)cotAcosec2A=tanA

Exercise 21.1 | Q 3.07

Prove the following identity : 

cosecA+cotA=1cosecA-cotA

Exercise 21.1 | Q 3.08

Prove the following identity : 

cosecAcosecA-1+cosecAcosecA+1=2sec2A

Exercise 21.1 | Q 3.09

Prove the following identity : 

1+cosA1-cosA=tan2A(secA-1)2

Exercise 21.1 | Q 3.1

Prove the following identity : 

(cotA-cosecA)2=1-cosA1+cosA

Exercise 21.1 | Q 4.01

Prove the following identity : 

cosec2q-1=cosq  cosecq

Exercise 21.1 | Q 4.02

Prove the following identity : 

1+sinq1-sinq+1-sinq1+sinq = 2secq

Exercise 21.1 | Q 4.03

Prove the following identity : 

1-cosA1+cosA=sinA1+cosA

Exercise 21.1 | Q 4.04

Prove the following identity : 

1+cosA1-cosA=cosecA+cotA

Exercise 21.1 | Q 4.05

Prove the following identity : 

secq-1secq+1+secq+1secq-1 = 2 cosesq

Exercise 21.1 | Q 5.01

Prove the following identity : 

(secθ-tanθ)2=1-sinθ1+sinθ

Exercise 21.1 | Q 5.02

Prove the following identity : 

1sinA+cosA+1sinA-cosA=2sinA1-2cos2A

Exercise 21.1 | Q 5.03

Prove the following identity : 

sinA+cosAsinA-cosA+sinA-cosAsinA+cosA=22sin2A-1

Exercise 21.1 | Q 5.04

Prove the following identity : 

tan2A-tan2B=sin2A-sin2Bcos2Acos2B

Exercise 21.1 | Q 5.05

Prove the following identity : 

cosA1-tanA+sin2AsinA-cosA=cosA+sinA

Exercise 21.1 | Q 5.06

Prove the following identity : 

(1+tan2A)+(1+1tan2A)=1sin2A-sin4A

Exercise 21.1 | Q 5.07

Prove the following identity : 

cos3A+sin3AcosA+sinA+cos3A-sin3AcosA-sinA=2

Exercise 21.1 | Q 5.08

Prove the following identity : 

(tanθ+1cosθ)2+(tanθ-1cosθ)2=2(1+sin2θ1-sin2θ)

Exercise 21.1 | Q 5.09

Prove the following identity : 

sinA-sinBcosA+cosB+cosA-cosBsinA+sinB=0

Exercise 21.1 | Q 5.1

Prove the following identity : 

1cosA+sinA-1+2cosA+sinA+1=cosecA+secA

Exercise 21.1 | Q 5.11

Prove the following identity : 

cotA+cosecA-1cotA-cosecA+1=cosA+1sinA

Exercise 21.1 | Q 5.12

Prove the following identity :

secA-1secA+1=sin2A(1+cosA)2

Exercise 21.1 | Q 6.01

Prove the following identity  :

(1+cotA)2+(1-cotA)2=2cosec2A

Exercise 21.1 | Q 6.02

Prove the following identity : 

cosecθtanθ+cotθ=cosθ

Exercise 21.1 | Q 6.03

Prove the following identity : 

(1+tan2θ)sinθcosθ=tanθ

Exercise 21.1 | Q 6.04

Prove the following identity : 

1+sinθcosecθ-cotθ-1-sinθcosecθ+cotθ=2(1+cotθ)

Exercise 21.1 | Q 6.05

Prove the following identity : 

(1+cotA+tanA)(sinA-cosA)=secAcosec2A-cosecAsec2A

Exercise 21.1 | Q 6.06

Prove the following identity : 

2(sin6θ+cos6θ)-3(sin4θ+cos4θ)+1=0

Exercise 21.1 | Q 6.07

Prove the following identity : 

sin8θ-cos8θ=(sin2θ-cos2θ)(1-2sin2θcos2θ)

Exercise 21.1 | Q 6.08

Prove the following identity : 

sec4A-sec2A=sin2Acos4A

Exercise 21.1 | Q 6.09

Prove the following identity :

tan2θtan2θ-1+cosec2θsec2θ-cosec2θ=1sin2θ-cos2θ

Exercise 21.1 | Q 6.1

Prove the following identity :

sec2θ-sin2θtan2θ=cosec2θ-cos2θ

Exercise 21.1 | Q 6.11

Prove the following identity :

cos3θ+sin3θcosθ+sinθ+cos3θ-sin3θcosθ-sinθ=2

Exercise 21.1 | Q 6.12

Prove the following identity :

tanθ+sinθtanθ-sinθ=secθ+1secθ-1

Exercise 21.1 | Q 6.13

Prove the following identity : 

[1(sec2θ-cos2θ)+1(cosec2θ-sin2θ)](sin2θcos2θ)=1-sin2θcos2θ2+sin2θcos2θ

Exercise 21.1 | Q 6.14

Prove the following identity :

cot2θ(secθ-1)(1+sinθ)=sec2θ(1-sinθ1+secθ)

Exercise 21.2

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE 21 Trigonometric Identities Exercise 21.2

Exercise 21.2 | Q 1

If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2

Exercise 21.2 | Q 2

If xacosθ=ybsinθ  and axcosθ-bysinθ=a2-b2,prove that x2a2+y2b2=1

Exercise 21.2 | Q 3

If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   x2+y2+z2=r2

Exercise 21.2 | Q 4

If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m

Exercise 21.2 | Q 5

If x = acosθ , y = bcotθ , prove that a2x2-b2y2=1.

Exercise 21.2 | Q 6

If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1

Exercise 21.2 | Q 7

If x = asecθ + btanθ and y = atanθ + bsecθ , prove that x2-y2=a2-b2

Exercise 21.2 | Q 8

If tanA + sinA = m and tanA - sinA = n , prove that (m2-n2)2 = 16mn 

Exercise 21.2 | Q 9

If sinA + cosA = 2 , prove that sinAcosA = 12

Exercise 21.2 | Q 10

If asin2θ+bcos2θ=candpsin2θ+qcos2θ=r , prove that (b - c)(r - p) = (c - a)(q - r)

Exercise 21.3

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE 21 Trigonometric Identities Exercise 21.3

Exercise 21.3 | Q 1.01

Without using trigonometric table , evaluate : 

cosec49°cos41°+tan31°cot59°

Exercise 21.3 | Q 1.02

Without using trigonometric table , evaluate : 

(sin47cos43)2-4cos245+(cos43sin47)2

Exercise 21.3 | Q 1.03

Without using trigonometric table , evaluate : 

cos90+sin30tan45cos245

Exercise 21.3 | Q 1.04

Without using trigonometric table , evaluate : 

(sin49sin41)2+(cos41sin49)2

Exercise 21.3 | Q 1.05

Without using trigonometric table , evaluate : 

sin72cos18 -sec32cosec58

Exercise 21.3 | Q 2.01

Find the value of θ(0<θ<90) if : 

cos63sec(90-θ)=1

Exercise 21.3 | Q 2.02

Find the value of θ(0<θ<90) if : 

tan35cot(90-θ)=1

Exercise 21.3 | Q 3.01

Without using trigonometric identity , show that :

sin42sec48+cos42cosec48=2

Exercise 21.3 | Q 3.02

Without using trigonometric identity , show that :

tan10tan20tan30tan70tan80=13

Exercise 21.3 | Q 3.03

Without using trigonometric identity , show that :

sin(50+θ)-cos(40-θ)=0

Exercise 21.3 | Q 3.04

Without using trigonometric identity , show that :

cos225+cos265=1

Exercise 21.3 | Q 3.05

Without using trigonometric identity , show that :

sec70sin20-cos20cosec70=0

Exercise 21.3 | Q 4

Prove that sinAsin(90-A)+cosAcos(90-A)=sec(90-A)cosec(90-A)

Exercise 21.3 | Q 5.01

For ΔABC , prove that : 

tan(B+C2)=cotA2

Exercise 21.3 | Q 5.02

For ΔABC , prove that : 

sin(A+B2)=cosC2

Exercise 21.3 | Q 6

Prove that  sin(90-A).cos(90-A)=tanA1+tan2A

Exercise 21.3 | Q 7

Find the value of x , if cosx=cos60cos30-sin60sin30

Exercise 21.3 | Q 8

Find x , if cos(2x-6)=cos230-cos260

Exercise 21.3 | Q 9

Given cos38sec(90-2A)=1 , Find the value of <A

Exercise 21.3 | Q 10

prove that 11+cos(90-A)+11-cos(90-A)=2cosec2(90-A)

Solutions for 21: Trigonometric Identities

Exercise 21.1Exercise 21.2Exercise 21.3
Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE chapter 21 - Trigonometric Identities - Shaalaa.com

Frank solutions for Mathematics - Part 2 [English] Class 10 ICSE chapter 21 - Trigonometric Identities

Shaalaa.com has the CISCE Mathematics Mathematics - Part 2 [English] Class 10 ICSE CISCE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Frank solutions for Mathematics Mathematics - Part 2 [English] Class 10 ICSE CISCE 21 (Trigonometric Identities) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Frank textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Mathematics - Part 2 [English] Class 10 ICSE chapter 21 Trigonometric Identities are Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Heights and Distances - Solving 2-D Problems Involving Angles of Elevation and Depression Using Trigonometric Tables, Trigonometry.

Using Frank Mathematics - Part 2 [English] Class 10 ICSE solutions Trigonometric Identities exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Frank Solutions are essential questions that can be asked in the final exam. Maximum CISCE Mathematics - Part 2 [English] Class 10 ICSE students prefer Frank Textbook Solutions to score more in exams.

Get the free view of Chapter 21, Trigonometric Identities Mathematics - Part 2 [English] Class 10 ICSE additional questions for Mathematics Mathematics - Part 2 [English] Class 10 ICSE CISCE, and you can use Shaalaa.com to keep it handy for your exam preparation.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.