Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
उत्तर
`(cotA + cosecA - 1)/(cotA - cosecA + 1)`
= `(cotA + cosecA - (cosec^2A - cot^2A))/(cotA - cosecA + 1)` [`cosec^2A - cot^2A = 1`]
= `(cotA + cosecA - [(cosecA - cotA)(cosecA + cotA)])/(cotA - cosecA + 1)`
= `(cotA + cosecA[1 - cosecA + cotA])/(cotA - cosecA + 1)`
= `cotA + cosecA`
= `cosA/sinA + 1/sinA`
= `(1 + cosA)/sinA`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.