Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
उत्तर
We know that `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and the denominator by `(1 - sin theta)`, we have
`cos theta/(1 + sin theta) = (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`
`= (cos theta(1 - sin theta))/(1 - sin^2 theta)`
`= (cos theta (1 - sin theta))/cos^2 theta`
`= (1 - sin theta)/cos theta`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
If `sin theta = x , " write the value of cot "theta .`
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
If 2sin2β − cos2β = 2, then β is ______.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.
(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.