मराठी

Prove the Following Trigonometric Identities. Cos Theta/(1 + Sin Theta) = (1 - Sin Theta)/Cos Theta - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`

उत्तर

We know that `sin^2 theta + cos^2 theta = 1`

Multiplying both numerator and the denominator by `(1 - sin theta)`, we have

`cos theta/(1 + sin theta) = (cos theta(1 - sin theta))/((1 + sin theta)(1 - sin theta))`

`= (cos theta(1 - sin theta))/(1 - sin^2 theta)`

`= (cos theta (1 - sin theta))/cos^2 theta`

`= (1 - sin theta)/cos theta`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.1 | Q 8 | पृष्ठ ४३

संबंधित प्रश्‍न

Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Prove that:

`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`


Prove that:

2 sin2 A + cos4 A = 1 + sin4


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


If `sin theta = x , " write the value of cot "theta .`


What is the value of (1 + cot2 θ) sin2 θ?


Prove the following identity :

`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ` 


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Prove that cot2θ × sec2θ = cot2θ + 1


Prove that cot2θ – tan2θ = cosec2θ – sec2θ 


If 2sin2β − cos2β = 2, then β is ______.


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.


(sec2 θ – 1) (cosec2 θ – 1) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×