Advertisements
Advertisements
प्रश्न
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
उत्तर
`(sin^2 theta + 1/(1+ tan^2 theta ))`
= `( sin^2 theta + 1/(sec^2 theta))`
=`( sin^2 theta + cos^2 theta)`
=1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
`1/(tan A + cot A) = cos A sin A`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Choose the correct alternative:
tan (90 – θ) = ?
If tan θ × A = sin θ, then A = ?
Eliminate θ if x = r cosθ and y = r sinθ.
Statement 1: sin2θ + cos2θ = 1
Statement 2: cosec2θ + cot2θ = 1
Which of the following is valid?