Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
उत्तर
L.H.S. = `(sinAtanA)/(1 - cosA)`
= `(sinAtanA)/(1 - cosA) xx (1 + cosA)/(1 + cosA)`
= `(sinAtanA(1 + cosA))/(1 - cos^2A)`
= `(sinA sinA/cosA(1 + cosA))/sin^2A`
= `(1 + cosA)/cosA`
= `1/cosA + cosA/cosA`
= sec A + 1
= 1 + sec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
If `sec theta + tan theta = x," find the value of " sec theta`
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`