Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `sec theta + tan theta = x," find the value of " sec theta`
рдЙрддреНрддрд░
We have ,
`sec theta + tan theta = x ............(i)`
⇒ `(sec theta + tan theta )/1 xx (sec theta- tan theta )/(sec theta - tan theta ) = x`
`⇒ (sec ^2 theta - tan^2 theta )/( sec theta - tan theta) = x`
`⇒1/ (sec theta - tan theta ) = x/1`
`⇒ sec theta - tan theta = 1/x ` ............(ii)
ЁЭР┤ЁЭССЁЭССЁЭСЦЁЭСЫЁЭСФ (ЁЭСЦ)ЁЭСОЁЭСЫЁЭСС (ЁЭСЦЁЭСЦ), ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб
`2 sec theta = x+ 1/x`
⇒` 2 sec theta = (x^2+1)/x`
∴ `sec theta = (x^2 +1)/(2x)`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
Choose the correct alternative:
1 + cot2θ = ?
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Given that sin θ = `a/b`, then cos θ is equal to ______.