рдорд░рд╛рдареА

If `Sec Theta + Tan Theta = X," Find the Value of " Sec Theta` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If `sec theta + tan theta = x,"  find the value of " sec theta`

рдЙрддреНрддрд░

We have , 

`sec theta + tan theta = x    ............(i)`

⇒ `(sec theta + tan theta )/1 xx (sec theta- tan theta )/(sec theta - tan theta ) = x`

`⇒  (sec ^2 theta - tan^2 theta )/( sec theta - tan theta) = x`

`⇒1/ (sec theta - tan theta ) = x/1`

`⇒ sec theta - tan theta = 1/x `              ............(ii)

ЁЭР┤ЁЭССЁЭССЁЭСЦЁЭСЫЁЭСФ (ЁЭСЦ)ЁЭСОЁЭСЫЁЭСС (ЁЭСЦЁЭСЦ), ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб

`2 sec theta = x+ 1/x`

⇒` 2 sec theta = (x^2+1)/x`

∴ `sec theta = (x^2 +1)/(2x)` 

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 8: Trigonometric Identities - Exercises 3

APPEARS IN

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity : 

`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


Choose the correct alternative:

1 + cot2θ = ? 


Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B


Given that sin θ = `a/b`, then cos θ is equal to ______.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×